
Automated Testing

Jordi Pradel

The Way

Agile software testing

Goals

Desiderata

Technical concepts

A very gentle introduction to Hexagonal Architecture

Patterns

Strategy

Goals

Goals

• We will focus on immediate goals:

• Bug detection

• Bug prevention

Desiderata

Principles

• Usable tests make developers and testers test better. Write tests that:

• Are deterministic !

• Make changes easy to welcome !

• Are user friendly (for developers and testers) !

• Automated tests are software, they should have good software quality

• High cohesion & low coupling

• Test economy is of uttermost importance !

Deterministic tests
Flaky tests

• Avoid flaky tests

• A flaky tests is a test that sometimes fails but that retried enough times
ends up passing

• They undermine your confidence in tests

• Or, even worse, if you continue to trust them, you may ignore a test
failure that is actually signaling a bug

Deterministic tests
Tests with undesired dependencies

• Isolate tests

• Some tests are not flaky in isolation but they fail if they are executed...

• In a different order

• In concurrency with other tests

• When some external system fails or changes its state

• When the stars align (or are misaligned) (hint: the clock)

Tests that (allow you to) welcome change

• Tests should allow refactoring to enhance the design

• Don't test the implementation does what it does, but that the outcome
of what it does is the expected outcome (behavior vs outcome)

• UI tests are difficult to automate... if you welcome changes to UI

• Tests should allow requirement changes

• Design tests with high cohesion: There should only be one reason why
you need to change any single test.

User friendly tests

• Clear error reporting

• Fast!

• Maintainable test code

Economics of testing

• Prioritize what to test depending on the likeliness of detecting or
preventing bugs

• Even for trivial programs it is impossible or impractical to test every
possible test input / initial state

• Design software in a way that testing is cheaper

• Choose your testing strategy wisely

Technical concepts
(aka buzzwords)

• Black box / white box
• Broad stack / component tests
• Test doubles: dummy, fake,

mock, stub, spy
• Unit tests
• Integration tests

Broad stack tests vs component tests

• Broad stack test: A test that exercises most of the parts of an application.

• a.k.a. Full-stack tests, end-to-end tests.

• Component (narrow) test: A test that limits the scope of the exercised
software to a portion of the system under test

• The component is tested through its interface

• Components used by the component under test can be replaced with
test doubles

Test double

• Something (a component, value, etc) that replaces a production element
for testing purposes.

• Dummy: Values or components that are never used

• Fake: A component with a working implementation that is not the one
used in production (e.g. an in memory test database).

• Mocks, stubs and spies

Test double
Mocks, stubs and spies

• Mocks vs spies

• Mocks: Components that are pre-programmed with expectations which
form a specification of the calls they are expected to receive.

• Spies: Components that record some information based on how they
were called, so you can do assertions on the recorded information after
the fact.

• Stubs: Components that provide canned answers to calls made during the
test.

• Usually both mocks and spies are also stubs

Unit tests

• Slippery word meaning different things to different people:

• Tests written by developers themselves

• Focusing on small parts of the system:very narrow component tests

• Fast, significantly faster than other kinds of tests

https://martinfowler.com/bliki/UnitTest.html

https://martinfowler.com/bliki/UnitTest.html

Integration tests

• Slippery word meaning different things to different people:

• Originally: Test that separately developed modules worked together
properly

• Today: Test that the system correctly interacts with an external service
(e.g. a database)

• Require live versions of the service (e.g. an actual database)

• Require networking

• Usually isolated thanks to virtualization (e.g. docker)
https://martinfowler.com/bliki/IntegrationTest.html

https://martinfowler.com/bliki/IntegrationTest.html

A very gentle
introduction to

Hexagonal
Architecture

Hexagonal architecture

Application
(domain)

driven sidedriver sideDriver
adapter

Driver
adapter

Driven
adapter

Driven
adapter

Driver
port

Driver
port

Driven
port

Driven
port

Driver adapters
(aka transport layer)

• Low level implementation of APIs, listeners, etc to get commands, queries
or events from the outside to the driver ports in the hexagon.

Driver ports
(aka interactors)

• Domain interface of the app used by the driver adapters to pass
commands, queries and events in the language of the domain.

Driven ports
(aka repositories)

• Domain abstraction of the capabilities of external systems used by the
application.

Driven adapters
(aka data sources)

• Low level implementation of the interfaces of driven ports that use
specific external services or technologies (e.g. a PostgreSql database).

Patterns
• AAA: Arrange-Act-Assert
• AAA with state
• In-memory production-ready

test fakes
• Isolated, production-like

external systems

Arrange-Act-Assert (AAA)

• Used to: Test stateless components (e.g. a function that calculates
fibonacci)

• Pattern:

1. Arrange: Select the inputs to use and the expected result

2. Act: Exercise the component and collect any result

3. Assert: Assert the actual result is the expected result

AAA with state

• Used to: Test stateful components

• Pattern:

1. Arrange: Select the inputs and initial state to use and set the initial state

2. Act: Exercise the component and collect any result

3. Assert:

1. Collect the final state

2. Assert the actual result is the expected result and the final state is
the expected state

https://blog.agilogy.com/2022-06-17-testing-and-persistent-state.html

https://blog.agilogy.com/2022-06-17-testing-and-persistent-state.html

In-memory production-ready test fakes

• Use test fakes (that behave like the production component) implemented in-memory to avoid
the dependency to external systems in tests

• " Make tests run fast!

• " Make tests deterministic and isolated

• # They may behave different than the actual production components

• # Implementation cost

• Alternatives:

A. Test in integration with Isolated, production(-like) external systems

B. Use mocks and stubs

• # You test the behavior of the system, not the outcome

Isolated, production(-like) external systems

• Run integration tests with isolated versions of the actual production
external systems

• Isolate tests from other tests, testers from other testers, etc.

• Usually through virtualization (e.g. Docker)

• " You test the actual component

• # Slow

Strategy
• Test all the domain
• Narrow tests of complex logic
• Integration tests of driven adapters
• Test driver adapters
• Test the assembly end-to-end
• Test test fakes

Test all the domain

Test all the domain

• Broad test of all the components that form the domain

• Write tests of the whole domain of your system, including all domain
components

• Exercise it through the appropriate (driver) ports

• Use AAA with state

A. Test with In-memory,
production-ready test fakes
(preferred)

Test all the domain
Two alternative strategies

B. Test in integration with Isolated,
production(-like) external systems
(slower)

Narrow tests of complex logic

Narrow tests of complex logic

• Test complex logic inside your domain with narrow tests

• Write a classical unit test to test some function or algorithm

• Usually tests stateless components (AAA), but may test stateful
components too (AAA with state)

• Take into account they may be fragile to refactoring

• Use really few of these

Integration tests of driven adapaters

Integration tests of driven adapaters

• Test components interacting with external services in integration with the
actual external services (e.g. databases, message queues, etc)

• Test your driven adapters with integration tests (with Isolated,
production-like external systems)

• Test them in isolation

• Use AAA with state

Test driver adapters

Test driver adapters

• Tests driver adapters: APIs, GUIs and other components driver the system

• Two alternatives:

A. Test their behavior with Mocks and stubs

B. Test their outcome with the actual domain (and tests doubles for
driven adapters)

A. Test their behavior with
Mocks and stubs

Test Driver Adapters
Two alternative strategies

B. Test their outcome with the actual
domain (and tests doubles for
driven adapters)

Test the assembly with end-to-end tests

Test the assembly with end-to-end tests

• Write a few tests that check all the components are correctly assembled

• Don't test whatever can be tested with the previous strategies

• Use AAA with state and Isolated, production(-like) external services

Test test fakes

Test test fakes

• Many of the tests so far depend on In-memory, production-ready tests
fakes to actually behave like production components.

• Make them actually production-ready by testing them like production
components:

• Parameterize the Integration tests of driven adapters so that they test
whatever adapter of such ports they receive

• Run the same test suite for both the production driven adapters and
their test fakes to guarantee both behave exactly equal

